A ricle Convergent Evolution of Ribonuclease H in LTR Retrotransposons and Retroviruses
نویسندگان
چکیده
Ty3/Gypsy long terminals repeat (LTR) retrotransposons are structurally and phylogenetically close to retroviruses. Two notable structural differences between these groups of genetic elements are 1) the presence in retroviruses of an additional envelope gene, env, which mediates infection, and 2) a specific dual ribonuclease H (RNH) domain encoded by the retroviral pol gene. However, similar to retroviruses, many Ty3/Gypsy LTR retrotransposons harbor additional env-like genes, promoting concepts of the infective mode of these retrotransposons. Here, we provide a further line of evidence of similarity between retroviruses and some Ty3/Gypsy LTR retrotransposons. We identify that, together with their additional genes, plant Ty3/Gypsy LTR retrotransposons of the Tat group have a second RNH, as do retroviruses. Most importantly, we show that the resulting dual RNHs of Tat LTR retrotransposons and retroviruses emerged independently, providing strong evidence for their convergent evolution. The convergent resemblance of Tat LTR retrotransposons and retroviruses may indicate similar selection pressures acting on these diverse groups of elements and reveal potential evolutionary constraints on their structure. We speculate that dual RNH is required to accelerate retrotransposon evolution through increased rates of strand transfer events and subsequent recombination events.
منابع مشابه
Convergent Evolution of Ribonuclease H in LTR Retrotransposons and Retroviruses
Ty3/Gypsy long terminals repeat (LTR) retrotransposons are structurally and phylogenetically close to retroviruses. Two notable structural differences between these groups of genetic elements are 1) the presence in retroviruses of an additional envelope gene, env, which mediates infection, and 2) a specific dual ribonuclease H (RNH) domain encoded by the retroviral pol gene. However, similar to...
متن کاملPhylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses.
We have conducted a phylogenetic analysis of the Ribonuclease HI (RNH) domains present in Eubacteria, Eukarya, all long-term repeat (LTR)-bearing retrotransposons, and several late-branching clades of non-LTR retrotransposons. Analysis of this simple yet highly conserved enzymatic domain from these disparate sources provides surprising insights into the evolution of eukaryotic retrotransposons....
متن کاملEvolution of Retrotransposable Elements
ABC Fax + 41 61 306 12 34 E-mail [email protected] www.karger.com © 2005 S. Karger AG, Basel 1424–8581/05/1104–0392$22.00/0 Accessible online at: www.karger.com/cgr Abstract. Eukaryotic and prokaryotic genomes encode either Type I or Type II Ribonuclease H (RNH) which is important for processing RNA primers that prime DNA replication in almost all organisms. This review highlights the important ...
متن کاملRetrotransposons and retroviruses: analysis of the envelope gene.
Retroviruses and long terminal repeat (LTR) retrotransposons share a common structural organization. The main difference between these retroelements is the presence of a functional envelope (env) gene in retroviruses, which is absent or nonfunctional in LTR retrotransposons. Several similarities between these two groups of retroelements have been detected for the reverse transcriptase, gag, and...
متن کاملRevisiting Plus-Strand DNA Synthesis in Retroviruses and Long Terminal Repeat Retrotransposons: Dynamics of Enzyme: Substrate Interactions
Although polypurine tract (PPT)-primed initiation of plus-strand DNA synthesis in retroviruses and LTR-containing retrotransposons can be accurately duplicated, the molecular details underlying this concerted series of events remain largely unknown. Importantly, the PPT 3' terminus must be accommodated by ribonuclease H (RNase H) and DNA polymerase catalytic centers situated at either terminus ...
متن کامل